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Chapter 5.2 Vertex Coloring

Theorem [Brook’s|. Let G be a connected graph, that is not a complete graph or an odd cycle. Then
X(G) < A(G).

Notice that Brook’s theorem tells us that x(G) < A(G) + 1 holds with equality iff G is a complete graph or an
odd cycle.

Let’s prove Brook’s theorem. Let G be a connected graph that is not complete or an odd cycle. Also assume
that we have proved the theorem for all smaller graphs (we are proving by induction on the number of vertices).

Let A(G) = A.
1: Show that the Brook’s theorem holds if A =2

Solution: If A = 2, then G is a cycle or a path and checking the Brook’s claim is
straightforward.

So we assume A > 3.

2: Show that G is 2-connected. (use induction)

Solution: If GG not 2-connected, one can color all blocks of GG separately with A colors
and combine them by permuting colors. Recall that block is a maximal 2-connected
subgraph.

3: Prove the case where G has a vertex v of degree less than A (greedy coloring with v last)
Hint: Use a spanning tree to make an ordering where everyone but v has a neighbor that comes later.

Solution: Take any spanning tree 7" of G. Orient all edges of T" towards v. Now
order the vertices of GG such that if zy is an edge of T" oriented in this direction, then
x is in the ordering before y. Hence v is last in the ordering and every vertex has at
least one neighbor behind in the ordering. Now try to color vertices according to this
ordering. Every vertex has to avoid color of at most A — 1 other vertices, that are in
the ordering before. So A colors is enough.

Now we assume G is A-regular. We still want to use greedy coloring, but guarantee that the last vertex has 2
neighbors with the same color.

4: Assume that there is a vertex v such that G — v is 2-connected. Prove Brook’s Theorem.

Hint: Start as: Take v and any vertex y in distance 2 from it (why it exists?). They have a common neighbor
z. Since G — v is 2-connected, G — v — y is connected. Hence there is an orientation of edges of G — v — y that
all go towards z.

Solution: So we there is an ordering of G — v — y where z is last and all vertices
but z have a neighbor behind in the ordering. Now we create the final ordering by
putting the vertices v and y first. Notice that in a coloring, v and y get the same
color since they come first and they are not adjacent. So z has A neighbors that are
already colored when coloring z, but two of them have the same color. Hence A colors
is enough.

5: Assume that there is a vertex v such that G — v is not 2-connected. Prove Brook’s Theorem. Notice that
G — v is still connected. Consider block decomposition of G — v and see where are neighbors of v.
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Solution: Since G is 2-connected, v has to have neighbors in the end-blocks. Take
neighbors z and y of v in two different end-blocks. Notice that G — x — y is still
connected. Create an ordering where x and y are first and v is last.

Question: Do you need a large clique in a graph G for a large chromatic number?

6: What is the chromatic number of the Grotzsch’s graph? Notice it is triangle-free.

Solution: It is 4. There is a coloring with 4 colors. For showing that 3 is not enough,
try to do a 3-coloring. First color the outer 5-cycle. Then vertices in the inner 5-cycle
must still contain all three colors. This kills the last color for the middle vertex.

Theorem (Erdds) For every k, ¢ there exists a graph of girth ¢ and chromatic number k.

The proof is probabilistic and we skip it for now.

Mycielski construction is a construction to create a triangle free graph of an arbitrary chromatic number.
Start with a graph G, duplicate every vertex and connect new vertex to the duplicates.

7: Apply the Mycielski operation on Cs.

Solution:
[ ] [ ] [ J [ ]
. o'k :
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I e :
: I\ |
Cs Cs duplicated vertrices The whole thing

Notice that this graph is isomorphic to the Grotzsch’s graph.

8: Let G be a graph with x(G) = k and ¢ be a k-coloring of G. Show that for every color z, there exists a
vertex v € V(G) colored z such that all remaining k& — 1 colors are on neighbors of v.
Hint: Show that if the conclusion is not true, then x(G) < k.

Solution: Suppose for contradiction that there exists a color z such that for every
vertex v of color z exists a color a, # z that is not on any of the neighbors of v. The
v can be recolored from z to a,. If we do it for all vertices colored by z, there will be
none left. Notice that vertices colored by z form an independent set so this operation
will not create new conflicts.
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9: Show that the Mycielski construction is increasing the chromatic number.

Solution: Suppose the original graph G that went into the construction has x(G) = k.
If we k-color it, for every color there is a vertex ¢ such that its neighbors have all
remaining £ — 1 colors. Hence the duplicate of v must have the color of v. The last
vertex added will have neighbors of all k£ colors. Hence the graph that came from the
construction is not k-colorable and at least one extra color is needed.

Now we try to construct all graphs with chromatic number at least k.

k-constructible graphs are obtained recursively as follows:

1. K} is k-constructible
2. If G is k-constructible and two vertices x, y of G are non-adjacent, then also (G+xy)/xy is k-constructible.

3. If G1,G9 are k-constructible and there are vertices x,y1,y2 such that G; N Gy = {z} and xy; € E(G;)
and zys € E(G2), then also (G1 U G2) — zy1 — xy2 + y/ — lya is k-constructible.

10: Show that all odd cycles are 3-constructible.

Solution: Start with triangles. Next one can use 3 to merge two triangles together
and get a 5-cycle. Notice that merging with triangle always adds 2 vertices, so we keep
getting odd cycles.

11: Show that all k-constructible graphs are at least k-chromatic. That is, they cannot be colored by k — 1
colors.

Solution: K clearly needs £ colors

For 2, if there is an ¢ coloring ¢ of (G + xy)/xy then one can find an ¢-coloring of
G by simply reusing the color ¢(v,,) on « and y. Here v,, is the vertex obtained by
identification of x and y.

For 3, any ¢-coloring ¢ of the resulting graph gives c¢(y1) # ¢(y2). Hence one of them is
not the same as c¢(x). This means either G; or G5 have (-coloring.

Hence ¢ > k.
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Theorem (Hajés 1961)
Let G be a graph and k& € N. Then x(G) > k if and
only if G has a k-constructible subgraph.

Notice that adding things to G will not decrease the
chromatic number. So we cannot give an exact descrip-
tion of G but we show it has a subgraph that makes the
chromatic number large.

Proof Let G be a graph with x(G) > k. We want to show it has a k-constructible subgraph. Suppose for
contradiction G has no k-constructible subgraph. Take G minimal with respect to the number of vertices.
Subject to that, take G maximal with respect to the number of edges (adding any edge causes existence of a
k-constructible subgraph).

We would like to find a triple of vertices inducing one edge and then use 3. for finding some k-constructible
subgraph.

12: Show that G is not a complete r-partite graph.
Solution: If G is complete r partite then G is r-colorable. If » < k, it is a contradic-

tion with x(G) > k. If r > k, then G contains K as a complete subrgaph. This is a
contradiction since now G contains a k-constructible subgraph Kj.

13: Show that G contains x, y1, and yy such that y1y2 € E(G) but zy1, zys € E(G).

Solution: Since GG is not a complete r-partite graph, relations of a non-edge is not
an equivalence. There must be something that shows it is not an equivalence class and
that something is exactly x, y1, and ys.

By the maximality of G, G + xy; contains a k-constructible subgraph H;.

14: Finish the proof by finding a k-constructible subgraph in G. Start by applying 3. on H; and Hs. What
if H; and Hy have common vertices?

Solution: Take copies of H; and Hs. These are k-constructible. Applying 3. also
creates a k-constructible subgraph. Now x is not adjacent to y; or y». For every vertex
shared by H; and Hs, apply operation 2 to identify them. The result is a subgraph of
G.

15: [Open problem| Reed’s conjecture: x(G) < [(w(G) + A(G) +1)/2]
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